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e The understanding of scale interactions for 3-D
incompressible Euler and Navier-Stokes eqns have
been a major challenge.

e For high Reynolds number flows, the degrees of
freedom are so high that it is almost impossible to
resolve all small scales by DNS.

e Deriving an effective equation for the large scale

solution is very useful in engineering applications.

e The main difficulty in deriving effective
equations is the lack of scale separation. There is
a continuous spectrum of scales.

e Can homogenization theory based on scale
separation produce any useful result?



e The purpose of this study is to derive a
nonlinear homogenization result for the

incompressible Euler equations.

e The nonlinear and nonlocal nature of Euler
equations makes it difficult to construct a
properly-posed multiscale solution.

e The key idea in deriving a multiscale solution is

to use the Lagrangian description.

e The multiscale structure of the solution
provides a critical guideline in constructing a

general multiscale numerical method.



Formulation

We consider the 3-D incompressible Euler eqns

u; + (u€- V)u® + Vp© =0, (1)
V-u® =0, (2)

with multiscale initial data
u¢(x,0) = U(x) + W(x, %).

u‘(t,x) and p(t,x) are velocity and pressure. We
assume that U and W are smooth, W(x,y) is

periodic in y and has mean zero.

e The question of interest is how to derive an
effective (or homogenized) equations for the
averaged velocity field as € — 0.



Previous work by MPP

e The homogenization of the Euler equations with
oscillating data was first studied by
McLaughlin-Papanicolaou-Pironneau in 1985.

e To construct a multiscale expansion for the
Euler equations, they made the assumption that
the oscillation is convected by the mean flow.
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where w(x,t,y,7), ui(x,t,y,7), m, and p; are
assumed to be periodic in y and 7, and 0 is
convected by the mean velocity field u
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Previous work — continued

e Using multiscale expansion techniques, MPP
obtained periodic cell problems for w(x,t,y, 7),

u;(x,t,y,7), m, and pj.

e However, it is not clear whether the resulting
cell problems for w(x,t,y,7), etc have solution
that is periodic in both y and 7.

e Additional assumptions were imposed on the
solution of the cell problems in order to derive a
variant of the £ — ¢ model.

e A more accurate ansatz which accounts for the

oscillation in the characteristics may be needed.



e Our study shows that the oscillation is actually

convected by the oscillatory velocity field:

00°¢
ot

Fut Ve =0, 6°(x,0)=x. (4)

e This becomes obvious when we formulate the
2-D Euler equations in vorticity form

6c(x,1)

w(x,t) = wo(0°(x,1), -

).

e It is not clear what is the multiscale structure of
6€(x,t) since its structure is coupled to the

multiscale structure of u¢.

e Further, if we formally expand 6¢(x,t) into

0°(x,1) = O(x, 1) + ey (x,£, =, 1) + ..
€ ¢

then #; would have O(1) contribution to u.



Lagrangian description of the Euler equations

e The key idea in constructing multiscale
solutions for the Euler equation is to reformulate
the problem using ¢ as a new variable.

e The multiscale structure of the solution
becomes very apparent in terms of 6¢ variable.

e This amounts to using a Lagrangian description
of the Euler equations.

e Specifically, we introduce a change of variable
from x to 0: 0 = 0°(x,1).

e It is easy to see that the inverse of this map,
denoted as x = X(0,t), is the flow map:
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— u(X(8,1),t), X(0,0)=6.



e In terms of 6 variable, the vorticity has a simple

expression:

0X¢ 0
W (XE(0,8),8) = 55 (0, w0 0, )

where w® =V X u®, and wy is the initial vorticity.

e Velocity can be computed via the stream
function, ¥, u® =V x 9, and 9 satisfies

C ALY = wE

e In terms of the 6 variable, we have

0X¢ 0
o . T € _ -
Vg - AA* V1) 50 (0, t)wo(0, 6),

where A = g—f{ = (%)_1.

e Using ‘g—f;| — 1, we can express A in terms of g—g.



Multiscale expansion of X and ¢

e We are mainly interested in obtaining an
averaged equation for the well-mixing long time
solution of the Euler equation.

e For this reason, we look for multiscale solutions

of the following form:

b = O (L, 0) + eV (t,0,7,y) + O(e?)

X =XO(t,0) + XV (t,0,7,y) + O(?),

where (1) and XM are periodic functions with

respect to y. Here y = 0/e and 7 = t/e.
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Homogenized Equations

It can be shown that X(@ X®) and @ )

satisty the following homogenized equations:

8, X0 _ (viw“” . Va) X© =0, XO|,_y=a,

5. XM _ (VaXm) I vau)) vigp® =0, XV|._,=0,
and

Vi (VaX© 0 XOVLYO ) 4+VE(AT AV p V) = v

Vi (AJ AVyu®) = vy - W,

y

e Here Ay = VX0 + VyX(l). It can be shown
that |Ap| = 1, implying well-posedness of ! eqn.

e Equation for X! requires a solvability condition.
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Solvability Condition and Projection

e Solvability condition for X! requires that
eXW (-, 25y 5 0ase— 0.

e Let u; = Vyzp(l) be the cell velocity, and
Y (y,7) be the cell characteristic.

e We decompose the cell velocity field into two

parts:

u1(0,t,y,7) = 1111((9,15,}’,7’) + 1112((9,75,}’,7’).

e We need to remove the non-mixable part uis

1

T
5[ we@. Y. n),rdr > a £ 0
0

as 1" — oo.
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Solvability — continued

e For Navier-Stokes equations, the viscosity and
random forcing play the role to eliminate the
non-mixable component of the flow velocity.

e Eliminating this non-mixable component is
essential for the flow to be fully mixed, and to

reveal certain universality and scale similarity.

e For inviscid Euler equations without external
forcing, the projection step provides a systematic

way to eliminate the non-mixable component.

e [t can be also viewed as an acceleration method
for the flow to be fully mixed.
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Multiscale analysis in Eulerian frame

e Since small scale is propagated along the flow
map, it is natural to look for multiscale velocity

and pressure in the following form:

ue(t7 X) — u(t7 X7 7-) —|_ w(t7 X7 7-7 Y) —I_ 0(6)7
pe(t,x) =p(t,x,7) + q(t,x,7,y) + Ofe),
where 7 =t/e and y = 0°(t,x) /€, and 6€ is
defined implicitly by
0 = 0(t,%) + 0V (t,x, -, ) + O(),
€ €

and satisfies the following evolution equation:
6 +u°- Vo =0, 6°€0,x) =x.

We assume that w, and ¢ have zero mean with

respect to y.
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e The multiscale structure of the velocity field
u‘(t,x) is now coupled to the small scale

structure of 0¢(¢, x).

e Naively, one may be tempted to assume that 6¢
has the following multiscale scale expansion:

0°(, %) = 0(t,x) + #V (£, %, *, 5) + O(2).
€

€

e This is wrong. Under this assumption, 8¢ could
develop infinitely many scales in powers of € for
t > 0.

e It is important to define 6 implicitly through

o = 0(t,x) + 0D (¢, x, z 9—) + O(€?),

€

which has the same small scale structure as u¢.
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Define V,0¢ = B + ¢B1) . Tt can be shown that
BO = (- D,6M)1D,6;
BY = (- D,6MV) 1D, oW,

Substituting the expansion into the Euler

equations, we get,

1
Z[ O, w + O;u + B(‘))Tqu | 4+ Ou + O w +

(u+w)-V)(u+w)+ B(l)Tqu + V.(p+4q) =0.

This leads to the following result:

el O,w+0,u+ B(O)Tqu =0,
e : O(u+w)+((u+w) Vy(u+w)
+V.(p+q) + B(l)Tqu = 0.
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Further, since w and ¢ have zero mean, we obtain
by averaging the u-equation w.r.t. y

ou+u-V,u+ (w-V)w) + (B(l)Tqu> = —V.p,

Using the weak formulation, we can show that

-
(BY V,q) = (wV,-w).

Thus the homogenized equation for u becomes

ou+u-V,u+V, - (ww) =—-V,p,

V-u=0.
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B is determined from

BO = (- D,6M)1D,6;

6(t,x) is convected by the mean velocity.

8t0 + (11 . Vm)é’ — 0, 0|t:O = X

0 (t,x,7,y) as function of (7,y) is evolved by
0-0M + (w-V;)0 =0, 6| =0;

Again, we use a projection method to ensure no

secular growth in ()

1 (T
W — W — lim —/ w dT.
T—)OOT 0
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Extension to non-periodic multiscale data

o Let x{ = jh be the fine grid, and x{ = jH be

the coarse grid. We write

uo(xj) = uo(xj, Xf)

e Rescale the sub-grid cell problem of size H to a

unit domain of order one. Let y = x/H,

up(xj) = U—O(cha Yi/€);

where y; = jHh, and e = H

e Further, we define an average operator:

o) = [ wolxv)ay

3:30°

And decompose initial velocity field ug as
uy = U(x) + W(x,y) with (W) = 0.
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e We can use basically the same multiscale
analysis to derive the homogenized equation.

e We make the same expansions for u¢ and p¢

u(t,x) = u(t,x) + w(t,x,7,y) + O(e),
pe(t,x) = p(t,x) +q(t,x,7,y) + O(e),

where w and ¢ have zero mean, 7 = t/e and

y = 0¢(t,x)/e.

e The map 6°€ is given by
0 = 0(t,%) + 6D (t,x, -, L) + 0(e2)

€ €

and satisfies

0 +u- VO =0, 690,x)=
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Remark on more general multiscale solutions

e The homogenization theory presented here can
be used as a guideline to design a multiscale
method for more general multiscale solutions.

e Small scales for velocity w and pressure ¢ are

strongly localized.

e For general data, a local cell problem can be

constructed to supply small scale information for
the coarse grid model (as in MsFEM).

e Reynolds stress term (ww) is expected to reach

local statistical equilibrium very fast in 7.
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Numerical Experiments

We use direct numerical simulation (DNS) to check
the accuracy of our multiscale analysis in 2-D.

The DNS is performed using 512 by 512 mesh. The
multiscale computations use 64 by 64 on the coarse
grid, and 32 by 32 for the subgrid.

Figure 1 shows the initial horizontal velocity in fine
and coarse grid. It has no scale separation.

Figure 2 shows the horizontal velocity at ¢ = 0.5 in
fine and coarse grid.

Figure 3 shows the averaged velocity at ¢ = 1 ob-
tained by DNS and by homogenization respectively.
The agreements are very good.
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Figure 4 shows the Fourier spectrum at ¢ = 0 and
at ¢ = 0.5 respectively. The spectrum from homoge-
nization agrees very well with that from DNS.

Figure 5 shows the cross sections of the averaged
horizontal velocity at ¢ = 1 obtained by DNS and by
homogenization respectively.
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Fig. 4a . Fig. 4b
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Conclusions

e The multiscale analysis provides a useful
guideline to design effective coarse grid methods
for incompressible flow.

e When the flow is fully mixed, we expect that
the Reynolds stress term, i.e. (ww), will reach to

a statistical equilibrium relatively fast.

e As a consequence, we may need to solve for the
cell problem in 7 for a small number of time steps.

e For homogeneous flow, it should be sufficient to
solve one or a few representative cell problems to
compute the Reynolds stress.

e This would offer an efficient coarse method that
couples the large and small scales dynamically at
a cost comparable to LES.
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